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tials for statistical models. Potentials for symmetric models with two order parameten are 
thoroughly discussed. The double-cusp catastrophe is used for illustration. Its various 
symmetries and corresponding statistical models are revealed. As an important example, 
the three-state Polls model is studied in detail. Emphasis is placed on connections with 
exact results from conformal field theories describing m symmetric models. 

i. introduction 

The study of phase transitions with several order parameters has mainly been motivated 
by the crystallographic symmetry-changing transitions of solid state physics [ 11. These 
symmetries are composed of discrete translations and rotations. The latter constitute 
the point groups, namely the finite subgroups of O(3) .  Their representations on the 
order parameters are well known [ l ,  21. Alternatively, one may regard groups acting 
on internal variables of statistical models (electric or magnetic systems, etc) or field 
theories. The appearance of critical behaviour is frequently associated with a change 
in the internal symmetry of a system. 

Catastrophe theory (also known as singularity theory) has been recognized as a 
rigorous mathematical framework to deal with the topological features of phase 

isms, is particularly suited for studying internal symmetry in an abstract way, without 
relying on a privileged set of variables. For the same reason, the standard catastrophe 
theory seems to hide the symmetry-breaking character of some transitions, because it 
is difficult to tell by inspection if a given catastrophe has some symmetry and which 
symmetry it is. 

The role of symmetry in catastrophe theory has already attracted some attention, 
mainly from the mathematical point of view [4-61, as a restriction on the allowed 
diffeomorphisms. Here stems the concept of symmetric catastrophes, which exhibit the 
symmetry explicitly and can be classified according to it. This classification suffices to 
solve the problem of symmetry in general, given the fact that all possible symmetries 
of catastrophes can be determined, as we will see. 

The connection of catastrophe theory with Landau theory is mutually beneficial; 
because it allows transfer of information on catastrophe unfoldings and bifurcation 
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sets to phase diagrams of statistical models and vice versa. As an example, Dynkin 
diagrams of catastrophes [71 describe the topology of extremal-point structures [6, 81, 
encoding the structure of phase diagrams. The way a Dynkin diagram unfolds (its 
so-called bloom) 16, 81 represents how new minima (phases) appear, conveniently 
exhibiting the phase structure. Moreover, Dynkin diagrams strongly suggest the discrete 
statistical models to be associated with them and their symmetry. In fact, lattice models 
with a state variable taking values on a Dynkin diagram have already appeared in the 
literature for the ZD case [9, also 101. 

In this paper we shall focus upon the problems mentioned above; namely, classifying 
the possible symmetry groups for Landau potentials and studying the effect of symmetric 
as well as symmetry-breaking fields, hence revealing the phase diagram structure. We 
restrict to two order parameters (co-rank 2) for a thorough study, for mathematical 
reasons. However, the main features and possibilities of the approach will be well 
represented. The case of the permutation groups, which are realized by the Potts 
models, would demand higher co-rank and only a brief comment is made. For the 
description of the unfolding, we shall take as example the double-cusp catastrophe, 
which is the simplest compact case (a potential is called compact when the domain 
for which it is less than any given value is compact). It also exhibits the phenomenon 
of modulus; namely, an extra parameter that does not change the topology of the 
phase diagram (first considered in [l l]) .  Its phase diagram includes the potentials for 
the XU, Ashkin-Teller and three-state Potts models. 

Although we do not consider any space dimension in particular (the physical case 
being three), our classification is applied in full only in the ZD case, where arbitrarily 
high-order potentials are allowed by dimensional requirements (the elementary field 
is dimensionless). Besides, in that dimension the diverse types of critical behaviour 
are classified and completely described by ZD conformal field theory (zdcm) methods 
[12], the external discrete symmetry being an important factor. Therefore, it is an 
appropriate situation to test how useful the symmetric catastrophe description can be. 
Actually, the observation of the coincidence of the ADE classification of catastrophes 
[5] and that of zdcm [13] has currently caused a revival of it [see also 141. 

Before proceeding, it may be convenient to assess the adequacy of catastrophe 
theory in the classification of phase transitions. The assumption of analyticity at the 
critical point makes it equivalent to Landau theory, which is known not to hold in 
general in the scaling region. Nevertheless, the topological features of the phase diagram 
are not affected by this non-analyticity and they can always be represented by a Landau 
potential with the appropriate dependence of its coefficients on the thermodynamical 
parameters. 

The paper is divided in three parts: first, we expose the methods to find group 
invariants and we describe symmetric catastrophe germs and their unfolding. We relate 
them to the generic catastrophes. Second, we study the double-cusp catastrophe and 
its phase diagram in the D3 and D4 symmetry cases. Third, we apply the previous 
results to the ZD models using some results of zdcm to establish the potentials for 
special series of models. 

2. Group theory aud catastrophe theory 

Let us briefly review some concepts in catastrophe theory and in invariant theory 
before constructing the symmetric catastrophes. Catastrophe germs are classified, in 
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first instance, by the order of the first non-null jet (truncated Taylor expansion). Let 
it be k Then, for homogeneous cases, there exist local coordinates for which it is a 
k-degree monomial, written for co-rank 2 as 

The action of diffeomorphisms on it reduces to linear transformations, GL(2, R). 
Therefore, the second step consists of an algebraic classification of k-forms under the 
linear group. This is done by analysing the root structures of the equation j * ( f )  = 0 
[15]. Since we have just two variables, after dehomogenization by factoring x x  out 

j k ( f ) = x k x  c ~ ( y / x ) ' = x ' ~ u j i '  i = j - k  i := y l x  a .  , ' I  := c.. (2.2) 
i j 

we get an ordinary aigebraic equation OF degree k 

1 u,i' = 0. 
J 

The root structure is given by the multiplicity of the roots of this equation and the 
number of real ones. It is invariant under linear transformations of the x, y variables 
that induce proiective transformations on i. They form a group called PSL(2. R). Each 
root structure corresponds to a class of germs giving the same catastrophe, which is 
represented by a canonical form. The compact germs have no real roots. 

If the germ (2.1) is invariant under some discrete group, it must leave invariant 
not only the root structure but also the position of the roots; that is, it induces 
permutations among them. Thus, the symmetry groups of these germs are the finite 
subgroups of PSL(2, R). These are well known to be isomorphic to the finite subgroups 
of O(2)  [16], namely, the two series of cyclic and dihedral groups, C. and 0.. Finding 
the symmetry of a given germ is not easy. It is necessary to find which projective 
transformations permute the roots. This is not yet the solution, because it only ensures 
the semi-invariance of the germ (invariance up to a constant, see [I71 for definitions). 
The actual symmetry group is thus a subgroup of those transformations. The inverse 
process is equivalent but more fruitful: since we know all possible groups of symmetry, 
begin with the ZD representations of the groups and find all their invariants (as done 
in [17]). The canonical germs must be constructed from them and will exhibit the 
symmetry explicitly. 

Complex germs [5] also have physical interest [13,24]. For them, the groups of 
symmetry are the finite subgroups of PSL(2, C), which are the C. and 0, series and 
the three exceptional groups of symmetry of platonic polyhedra, T, 0 and I. The ZD 
representations and their invariants are buiit in [ i i j .  Tney form a ring with a finite 
basis. With similar methods, it is easy to  build the invariants of PSL(2, R): starting 
from the complex representations of C. by the roots of unity on two independent 
complex variables, z and 5, we can obtain the real ones in the standard way, just taking 
the real and imaginary parts of one of the two variables, z = x+iy (the other gives the 
complex conjugate representation z* = x - iy, see [ 181). The basis has three complex 

which is invariant under the full 0(2) ,  and the real combinations I, := Z "  + z*" and 

zoz*). Observe that this representation of the reflection is real, and therefore different 
from the complex representation used in [17]. It leaves invariant the first but not the 
second and we have a basis with only two monomials, I ,  and I,. They generate the 

iiivai-;anq zz, in "-A i n  ..,I.:.& +- = - - *  tA. r .- - - * - - 2 ~ . . 2  
' Y  9 

-,,U A , " . . L I B 1  LLLL... IbOL.,*LI".. L" I - L  ,-'a" I". 'U'-" -*  

I ,.-I(z"-z*"). To enlarge C, to D. we add the reflection y+-y (equivalent to 
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ring of invariants, which is written RIIo, I , ] .  In the case of C. the three invariants 
must satisfy a relation (called syzygy) which turns out to be 41," + I : +  1: = 0, and the 
ring of invariants is the direct sum RIIo, I , ]@12R[Io,  I , ] .  

Any symmetrical homogeneous germ can be constructed taking a linear combination 
of powers of the basic monomials that fits the desired degree for it. The simplest case 
occurs for degree n. At this point, it is necessary to  recall that only compact germs are 
relevant for potentials, because they are bounded below. But the nth order invariants 
I, and 1, have only real roots, as is easily checked, implying they are non-compact. 
This can be solved for n even by adding to them 2 a ( x 2 + y 2 ) " l 2  (with a suitable a ER) ,  
whereas for n odd (2 .3)  has at least one real solution. As a last remark, all linear 
combinations of I, and I ,  have D. symmetry because there is always a reflection axis, 
although it may not be distinguished unlike the x-axis selected before. With these 
provisos, we have the nth order invariant (n even), expressed in the complex form as 

0,: 2 " + 2 * " + 2 a ( z ~ * ) " / ~ .  (2.4) 

The constant a is a symmetry-preserving modal parameter. As an aside, we notice that 
the total number of modal parameters for this germ is n - 3  but the others break the 
symmetry. It can be seen that the real roots disappear for a > 1. The border cases a = 1 
correspond to degenerate germs, with nf2 couples of real roots, e.g. ( Z " / ~ + Z * " ~ ~ ) ~ .  

We shall show examples for the cases n =4, 6. Formula (2.4) gives for n =4, using 
real variables x, y, 

D4: (2.5) 

equivalent to the usual form x 4 + y 4 +  ax2y2,  for -2<a <2. These two border values 
correspond to the two possible degenerate germs ( x 2 - y 2 ) 2  and ( ~ ~ + y ' ) ~ ,  only the 
second being compact. For n = 6 

D6 : x6 - y 6  - 15x4y2 + 15x2y4+ a ( x 2 + y 2 ) '  

x4+y4-6x2y2+ a ( ~ ~ + y ' ) ~  = ( a  + 1 )  x 4 + y 4 - 2  - x2y2 I 3 - a  l + a  I 

= (a+1)x6+  ( a  - 1 ) y 6 - ( 1 5 - 3 a ) x 4 y z + ( ~ ~ + 3 a ) x 2 y 4  (2.6) 

where the border germs are ( ~ ' - 3 . x ~ ~ ) ~  and (x2+y2) ' .  Writing the germ in the usual 
canonical form with the three modal parameters 

x6+y6+ ax4y2+ a 'x2y4+ px'y' (2.7) 

we have that in the general case only the C2 inversion symmetry is present, whereas 
for a =a' there also exists the x - y  symmetry? increasing to D 2 .  If besides ,O = 0; it 
enlarges up to D4, as we realize by observing that the expression 

x6 + y6 + ( a  + 1)x4y2 + ( a  + i ) x 2 y 4  = ( x 4 +  y4  + ax2y2) (x2+ y 2 )  (2.8) 

inherits the symmetry of the first factor. The D, case (2.6) is given by a uniparametric 
family of a, a' values. The generalization to larger n may be made along the same 
!ices. !! is interesting to nnte !hat I!! the g r ~ ~ p s  _nk with k r  n and even, are realized 
in the moduli space of the n-degree germ. 

It must be noticed that some invariants may accidentally have higher symmetry. 
They correspond to degenerate catastrophe germs: most germs have moduli; certain 
points on the boundary of the moduli space touch other moduli spaces of germs with 
higher symmetry, a phenomenon well known in algebraic geometry. Several examples 
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have appeared above. A special one is the most general C. invariant of nth degree 
that always has full D. symmetry, as already mentioned. 

For three or more variables the classification of invariants is not complete [17]. 
However, for groups of physical interest, like the symmetric group, it is still possible 
to establish their invariants [5]. The natural representation of SN in RN can be reduced 
to RN-' making null the linear invariant. The symmetry is then realized as that of the 
N-simplex. The N - 1 remaining invariants form a basis and a catastrophe germ may 
be built by any combination of them. The simplest case S, is already included in the 
previous classification, since S, = D3. The S3 representation was implicitly used in the 
three-state model of [21]. It is easy to check that the invariants are the same. 

3. Symmetry of the unfolding: symmetry-restricted catastrophes 

Once the symmetric germs have been classified, the first thing one observes is that 
arbitraly perturbations (deformations in the mathematical jargon) are likely to break 
the symmetry. Therefore, it is necessary to look for the symmetry-preserving perturba- 
tions. Alternatively, it is possible to construct catastrophe theory in a symmetric way 
from the beginning [5,6], restricting to equivariant diffeomorphisms (symmetry- 
preserving diffeomorpbisms, that is to say commuting with the action of the group) 
[4]. There is an equivariant Morse lemma [5]; the other elements of catastrophe theory 
can be specialized in the same way. This approach has been followed in a somewhat 
different context in [21]. 

For every symmetric function one can construct a symmetry-restricted Taylor 
expansion from the basis of invariants. As in the general case, the control parameters 
allow us to kill off some of the first Taylor coefficients, but the infinite tail still remains. 
It is removed by an equivariant transformation, leaving a term, the symmetric gem. 
This construction is the mathematical foundation for the work on symmetry of Landau 
potentials already cited [ l ,  21. For instance, the most general D. invariant potential 
is an arbitrary function of the two primitive invariants, lo and I,, which were obtained 
in the previous section. The potential can thus be written as 

(3.1) 
The highest singularity arises for the value of the control parameters such that the 
maximum number of lowest order e, become null. These cu can be taken as new control 
parameters. The canonical germ arises after all possible higher-degree terms are 
eliminated by a nonlinear equivariant transformation. 

A nonlinear equivariant transformation must transform invariants into invariants, 
producing just a change of variables in the function r. Therefore it might seem that 
the canonical forms for those functions should be the same as those for the generic 
co-rank 2 catastrophes. Such a fortunate fact is by no means true, because the converse 
property does not hold, namely, not every change of two variables can be produced 
as a transformation of the two invariants. This happens in spite of the fact that those 
changes of two variables that actually occur are parametrized by two arbitrary functions 
of lo and I,. 

When the control parameters are null we obtain the degenerate configuration with 
all equilibrium points coinciding. Non-null values (symmetric perturbations) may 
unfold them, producing spontaneous symmetry breaking. The first term is the O(2) 
quadratic invariant, that is, the Morse part of the potential, which always appears and 

run, I , )  = C , ~ I , + C , , I ,  + C , , I ~ + ~ ~ , I : + ~ , , I , I , + .  . . . 
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is associated with the thermal perturbation, the coefficient being proportional to 
f:= T- T,. When qO<O, the equilibrium state (non-ordered phase) splits into n 
different minima, leading to ordered phases with spontaneously broken symmetry. 
Under the action of the C. generating element 

z (3.2) 

each phase transforms in the next one. They constitute the fundamental representation 
of the group. Considering the equivalence between phases and states of the statistical 
models, we deduce that these potentials are appropriate for the famous clock models 

The remaining unfolding terms in (3.1) lead to other patterns of spontaneous 
symmetry breaking. Their control parameters (coupling constants in field-theory 
language) may also depend on the temperature. However, we adopt the point of view 
of considering also non-symmetric perturbations, namely the entire unfolding of the 
catastrophe regarded as generic. Asymmetric perturbations may break the symmetry 
completely, e.g. the elementary fields (U, U) coupled to (x, y), or may still leave some 
subgroups unbroken. In this case, for non-null values of these control parameters, the 
irreducible representation of the group breaks into irreducible representations of the 
subgroup. 

The best way to exhibit the phase structure as a function of the control parameters 
is by using Dynkin diagrams, which encode the relevant information on the extrema1 
points of the potential [6]. The method starts from the catastrophe point and proceeds 
by splitting one minimum in each step, leaving a simpler catastrophe point. This reduces 
the codimension to the next lower multicritical-point set, represented by a subdiagram 
of the Dynkin diagram. Symmetric perturbations are easily controlled, because they 
yield symmetric Dynkin diagrams (a n-goo for the thermal perturbation T <  T,). Even 
for the simplest cases, constructing the entire phase diagram demands a highly 
developed spatial imagination. Some sections of the phase diagram of the double-cusp 
catastrophe will be analysed in the next section. 

Z'ei(z-/") 

WI. 

4. Symmetry in the double-cusp catastrophe and related statistical models 

The X, catastrophe (2.5) is the simplest CO-rank-2 catastrophe suitable for describing 
phase transitions [ 111. Its modal parameter a = cZ2 labels a line of tetracritical points, 
divided in three parts, a < -2, -2< a < 2, a > 2. The first one corresponds to non- 
compact germs. The other two parts correspond to compact germs but they are 
interchanged under a ?r/4 rotation on the (x, y )  plane and one of them suffices. 

The a = 2 value yields the O(2)  degenerate catastrophe germ already mentioned. 
Therefore, it can be associated with the XY model. However, the symmetry can be 
restricted by third-degree terms. These are four independent monomials, but the two 
partial derivatives 

cannot appear. The two remaining independent polynomials can be chosen to be the 
D, invariants x(x2-3y2) and y(y2 -3~ ' ) .  The third-degree perturbation is an arbitrary , 
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linear combination of them and also has D, symmetry, because it can be put in the 
canonical form x3-3xy2 by a rotation, that leaves the fourth-degree term invariant. 
Adding the thermal perturbation we get the potential 

r = (x2+ y2)2+C(X3-3Xy2)+ w ( x 2 + y 2 )  (4.3) 

proposed some time ago for the three-state Potts model [23]. It has the form (3.1). 
The different Dynkin diagrams are shown in figure 1. The catastrophe point? c = w = 0; 
is a symmetrical tricritical point. 

The full unfolding includes four asymmetric terms, and can be written as 

r = (x2+ y2)2+  c(x3 - 3xy2) + w,x2+ w2y2+2w,2xy + ux + uy. (4.4) 

The codimension is 6, as the seven possible extrema1 points (figure 1) indicate. The 
three-component model of [21,22], with codimension 5, can be represented by this 
potential, after a change of variables (for it, e = 4/3). It was studied with the renormaliz- 
ation group and shown to have a symmetric tricritical point (TCP) corresponding to 
the three-state Potts model. The phase diagram obtained there can be interpreted as 
a part of that of (4.4), as we shall see. 

' 

Let us introduce the change of parameters 

(4.5) 

A simple phase diagram for (1, U, U )  occurs when w I 2  = w _  = 0, corresponding to the 
Potts model with external fields. If we assume that the only dependence on t resides 
in w, we obtain the phase diagram with three TCPS placed symmetrically at non-vanishing 
values of ( U, U )  and a quadruple point at U = U = 0, which corresponds to a discontinuous 
phase transition. If c also vanishes when t = 0, we get the symmetrical TCP [23]. 
Presumably, when w,>, w- # 0, we can still manage to produce a TCP, obtaining the 
three tricritical lines arranged in a symmetric fashion of 1221. 

... ~ /... ...,,* w- - ,"I - " 2 1 ,  L. ... ~ ,... , . . . \ I *  
"t - ! w1 "211 L 

l u < O  l u > o  

Figure 1. Dynkin diagrams for the D, unfolding of the double cusp. 

The phase diagram for (wI, w2) when U = U = wI1  = 0 can be obtained analytically 
although the insight gained from the Dynkin diagrams is still fundamental to organize 
it. It illustrates the possible Dynkin diagrams associated with this catastrophe, and 
therefore the connection of the Potts model with others also described by  (4.4). This 
diagram is exhibited in figure 2, for a non-zero value of c. Some conclusions about 
the wnoie phase diagram can ais0 be drawn jusi with ihe heip of symmeiry consiaer- 
ations, but we will not dwell on it. 

For a > 2 (equivalently, -2 < a  < 2) the double-cusp is more complicated. The 
partial unfolding 

r = ~ ~ + y ~ + a x ~ y ~ + w ~ x ~ + w ~ y ~  (4.6) 
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Figure 2. Phase diagram for U = " =  w,,=O ( c =  1/3) showing characteristic Dynkin 
diagrams. The quadruple point is on the segment of the w+ axis located in zone 8. 
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was analysed in [l 11. When w ,  = w2 = w < 0 a spontaneously broken D4 configuration 
appears, with four minima, four saddle points and one central maximum forming a 
square, in place of the triangle of figure 1. It recalls the tensor product structure 
X,=A,OA,  plus a four-spin interaction (A, is the single cusp that corresponds to 
the king model). It can therefore be associated with the Ashkin-Teller model. I 

5. Series of symmetric potentials and ZD conformal field theories 

As we saw in section 3, for every symmetry group there is a whole series of symmetry- 
restricted catastrophes. These series now have an increasing interest because of their 
connection with the problem of classification of the ZDCFT~ [IO, 13,261, with regards 
to the ground state problem of string theory. A Zamolodchikov and V Fateev have 
described [25,261 several series of models for some groups, namely, 2, and SI (C2 
and D, in our notation). There is one series for the first one (the minimal models with 
diagonal modular matrix) and two for the second one, the W,-symmetric and the 
4/ 3-parafennion series. The central charges are 

6 
c l = l - -  

P ( P + l )  

c 2 = 2  1-- ( P ( P 3  

c ,=2  1-- i’ P(pl?t4J 
(5.3) 

whose limits when p goes to infinity are 1 and 2, indicating that the necessary number 
of order parameters are 1 and 2, respectively. The Z2-series potentials have the form 
x’‘~-’) and correspond to the critical behaviour of I D  spin models [26,27]. The 
potentials for the two-order-parameter series are not yet well established. 

Zamolodchikov’s procedure to associate a Lagrangian with a zdcmstarts by finding 
in the algebra of fields a reduced set (elementary fields) capable of generating the 
others as composites. This gives the co-rank, while the codimension is given by the 
number of relevant fields. Taking into account the external symmetry, it should already 
be possible to determine the potential. Nevertheless, an independent check is available, 
coming from some operator product expansions (OPES) which demand the presence 
of double derivatives of the elementary fields (descendant fields) and are consequently 
interpreted as a sort of equations of motion. The procedure works very neatly for the 
&-series, but for the others certain ambiguities may appear and, in some cases, different 
potentials have been found by different authors [28,29]. 

An interesting case is the first member of the W, series, the critical three-state Potts 
model [30]. It has two elementary spin fields, U and 6, and seven relevant fields 
altogether, identifiable as 

@ G I )  = U and 6, 

@ ~ 1 2 1 ~ ~ = u @ , ~ ~ , 2 , , l l = u 1 a n d @ ~ , 3 , , 2 1 = 6 1 .  

@ ~ , , , = u 2 a n d b 2  

This already suggests the potential (4.4) for it. In fact, it agrees with that found in [32] 
( u @ ) ~  = ( X ~ + Y ~ ) ~ ,  from the us OPE after identifying = C2. Nevertheless, this field 
also appears in that OPE, and before the U descendant, which implies that it must be 
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included in the equation of motion. Therefore, the potential must include the cubic 
term, as it should be expected to convey the necessary D, symmetry. This reconciles 
it with the one in [28], as its natural compactification. 

A similar analysis for the first member of the 4/3-parafermion series (the tricritical 
three-state Potts model) would suggest a potential such as 

r = ( x 2 + y 2 ) ) +  c ( x ~ - ~ x ~ ~ ) + ~ ( ~ ~ + ~ ~ ) ~ + ,  . . . (5.4) 

The cubic term is now irrelevant whereas the quartic is relevant (observe that this fact 
contradicts the nake  field dimensions). This model is connected to the previous one 
by the renormalization flow generated by the g perturbation. 

One can guess the general form of the potential for both series, according to (3,1), 

r(u,z)=z ~ ~ , ( ~ 6 ) ~ ( ~ ~ + 6 ' ) ~ .  (5 .5 )  

An equivalent form was proposed in the first reference in 1251, with U''" + 6'"' instead 
of (u3+6j")", but it is less convenient because the germ must contain the latter (the 
former is invariant under the much larger group D,,,,). But, as we have seen, power- 
counting arguments cannot be used and a detailed study of the  OPE^ for any particular 
model seems to be necessary. According to [29], the first term of the kth model of the 
W, series is 

6)  = (r6)k+l. (5.6) 

However, more operators must appear to determine its symmetry and we are not able 
to find a general rule to assign a potential to every model. 

Many more conformal models with discrete symmetries are suitable for a Lagrangian 
description. As was mentioned before, a good candidate for the potential of the 
Ashkin-Teller model is (4.6). Detailed studies of the ZD model seem to agree with it 
[lo, 13,321. 

6. Summary and discussion 

We have s ~ ~ d i e d  the ro!e nf syz-metry ia the coz!ext of cn!ast:nphe !henry nzd how 
it helps to understand phase transitions in statistical models. From the invariance 
properties of catastrophe germs, we could determine the possible groups of symmetry 
for co-rank 2 (two order parameters), C. and D.. It is remarkable that this excludes 
many models from having a Landau potential description with two order parameters, 
for instance the q-state Potts model for qa4.  We saw next how to construct germs 

how to analyse the symmetry in the entire moduli space. A general perturbation of a 
germ breaks its symmetry, hut we saw how the symmetry-restricted unfolding preserves 
the full symmetry. In this line, we applied symmetry considerations to analyse sections 
of the X, phase diagram and to relate them to known statistical models. 

Finally, we attempted to match the symmetric potentials with ~DCFTS, known to 
have those symmetries. We have succeeded partially. A deeper analysis should use 
further information provided by the fusion rules. However, there may be a more 
illuyinating and economical way, namely directly comparing a complete classification 
of symmetrical germs with a classification of zdcm with additional symmetry by 
modular invariance. Hopefully, there is an exact correspondence, as in the case of the 
ADE classification of simple germs and that of minimal models [13]; but in that more 

corresponding to those groups, which are a! specia! points i n  their moduli space, and 
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general case there do not seem to be complete classifications of either germs or modular 
invariant 2dCFT with which to begin, 

One might wonder if other series of zdcm also admit a Landau potential description 
by our CO-rank-2 catastrophes. This is a non-trivial question, because even if we have 
a construction of a theory in terms of a particular number of fields larger than two, it 
can still be possible to find another using just two. For instance, this happens for the 
Z. parafennion models [31]. Actually, potentials with two fields for this series have 
been found recently [32], relying in a coset representation of it. They fit in (2.4). 

As was observed in the introduction, the application of catastrophe theory reaches 
its full power in the ZD case, but it is in no way restricted to it. According to the Wilson 
&-expansion, a model is defined in the dimension ,in which its renormalization group 
fixed point is trivial, namely, there are no anomalous dimensions and the renormalized 
Lagrangian is the exact effective potential. If we believe far enough in the &-expansion, 
this potential also describes the phase transition in other dimensions, as long as it 
converges, although their critical points are non-trivial and the dimensions of fields 
anomalous. Somehow, the potential and the phase diagram that it entails can be 
considered independent of the space dimension, even though the dependence of its 
coefficients on the thermodynamical parameters may change with it, as we have seen 
for the three-state Potts model, leading to an apparent change of the phase diagram. 
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